Acute care
Optimising medication use in older adults living with frailty during hospitalisation
Appropriate use of medications involves both **prescribing** medications which are appropriate and will benefit the individual and **deprescribing** medications where the risks outweigh the benefits.

Considerations for Ongoing Benefit
- **Consider:**
 - Indication
 - Effectiveness
 - Duration of use
 - Life expectancy

Considerations for Harm
- **Consider:**
 - Adverse drug reactions
 - Drug–drug and drug–disease interactions
 - Pill/administration burden
 - Cost

Consider in the context of individual’s:
- Care/treatment goals
- Preferences
- Values
Older adults in hospital

› **Vulnerable group**
 - Acute (or chronic) reason for admission
 - Frailty
 - High risk of prolonged hospital stays, institutionalisation and death

› **Hospitalisation poses risks**
 - High rate of readmission
 - Risk of functional deterioration
 - Medical errors
 - Polypharmacy and PIMs
 - Delirium
Prevalence of polypharmacy and potentially inappropriate medication use in older inpatients: a systematic review

<table>
<thead>
<tr>
<th></th>
<th>Polypharmacy (n=15)</th>
<th>Potentially Inappropriate Medications (PIMs) (n=35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence</td>
<td>24.0% → 97.1%</td>
<td>7.0% → 88.5%</td>
</tr>
</tbody>
</table>

Changes in medication use during hospitalization

On admission
- 7.1 regular medications
- 23.8% taking ≥10 medications
- 54.8% taking ≥1 PIMs

On discharge
- 7.6 regular medications
- 28.3% taking ≥10 medications
- 60.8% taking ≥1 PIMs

During hospitalization
- 0.6% medications deprescribed
- 84.1% reactive and 15.9% proactive

What happens after discharge to deprescribed medications?

- **22%** of medications that were intentionally ceased during hospital admission were restarted in the 5 months following discharge.
- **27%** of medications that were ceased in hospital due to an ADR were restarted in the following 6 months.
- Intervention study (comprehensive geriatric assessment) - **25%** of medications that had been ceased were restarted within 1 year.

Barriers to optimising medication use in hospital

› Presentation of an acute problem

› The culture is to prescribe more medications (which may be enhanced in acute illness), with stopping a lower priority

› Inertia in work practice, and reluctance to question a colleague’s prescribing decisions, may lead to prescribing medications taken prior to admission without review

› Fragmented care
 - difficulties accessing complete medical histories

› Admission may be too short to implement changes and monitor
 - Lack of formal follow-up/support procedures
Opportunities to deprescribe in hospital

- Medication history is routinely undertaken
- Time available for discussions with patients/family
 - 89% of older inpatients were willing to stop one or more of their regular medications
- Opportunity for close short term monitoring
 - Physiological parameters are routinely monitored
- Complex decisions routinely occur
 - Collection of full history and investigations, routine discussion and consideration of factors such as life expectancy and exploration of individual goals of care
 - The multidisciplinary team, consultations from specialists
- Established methods of communication with primary care physicians
What do health care professionals feel about deprescribing in hospital

› Over 90% of hospital pharmacists agreed that they had an important role in managing statin therapy in older inpatients (95% CI: 90.5–98.8%) Wu A, JPPR 2017

› Junior doctors (who usually chart prescriptions) may have limited confidence in their knowledge of geriatric pharmacology and ability to review medications, or may not feel that medication review is their role. Cullinan S, et al. Br J Clin Pharmacol 2014

› Geriatricians report they are more likely to deprescribe medications for patients with polypharmacy and underlying cognitive impairment or limited life expectancy. Ni Chroinin D, et al Age Ageing 2015
Findings

› 9 RCTs (n=2522 subjects)
 - Pharmacist led (n=4), physician led (n=4), multidisciplinary team led (n=1)
 - 4 used a specific tool to identify PIMs as part of the intervention – 1 of these used a computer support system
Findings

Medication outcomes:

- 7/9 studies reported a statistically significant reduction in PIMs in the intervention group, and no study showed an increase in PIMs

 → possible to improve quality of medication use in hospital

Clinical outcomes:

- ADRs (+,0), QOL (+,0), mortality (0), hospitalisation (0), falls (+,0), function (+,0)

 → mixed results on impact on clinical outcomes
Anticholinergic and sedative medications

› Intended effect (effect central to therapeutic action)
 - Anticholinergics: e.g. allergic rhinitis, urinary incontinence, nausea/vomiting
 - Sedatives: e.g. insomnia

› Unintended effect (effect not central to therapeutic use)
 - Anticholinergics: e.g. anti-depressants, antipsychotics
 - Sedatives: e.g. opioids, anti-convulsants

› Concerns about
 - Reduced/limited efficacy in older adults with frailty
 - Increased risk of harms in older adults with frailty
 - Negative effects of combinations
Total Drug Burden = $B_{AC} + B_S$

$$\frac{E}{\alpha} = \sum \frac{D}{D + DR_{50}}$$

$E = $pharmacological effect

$\alpha = $proportionality constant

$D = $daily dose

$DR_{50} = $daily dose required to achieve 50% of maximal contributory effect at steady state (estimated as the minimum recommended daily dose)

Table 1: Example of mathematical calculation of the Drug Burden Index (using clinical scenario)

<table>
<thead>
<tr>
<th>Medications in clinical scenario</th>
<th>Daily dose (D)</th>
<th>Minimum recommended daily dose (δ)</th>
<th>Individual DBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irbesartan 300 mg, daily</td>
<td>300 mg</td>
<td>75 mg (no anticholinergic or sedative effects)</td>
<td>0</td>
</tr>
<tr>
<td>Darifenacin 15 mg, daily</td>
<td>15 mg</td>
<td>7.5 mg (anticholinergic effects)</td>
<td>0.67</td>
</tr>
<tr>
<td>Temazepam 7.5 mg, at night</td>
<td>7.5 mg</td>
<td>7.5 mg (sedative effects)</td>
<td>0.50</td>
</tr>
<tr>
<td>Acetaminophen 300 mg, 2 tablets tds</td>
<td>1,800 mg</td>
<td>300 mg (no anticholinergic or sedative effects)</td>
<td>0</td>
</tr>
<tr>
<td>Codeine 15 mg, 2 tablets tds</td>
<td>90 mg</td>
<td>120 mg (sedative effects)</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Total DBI calculation

\[
DBI = \sum \frac{D}{D + \delta}
\]

1.60
Drug Burden Index (DBI)

Countries
- Australia
- Canada
- Finland
- The Netherlands
- New Zealand
- UK
- USA

Associated Outcomes
- ↓ physical function
- ↓ balance and falls
- Frailty
- Hospitalisation
- ↑ GP visits
- ↓ cognition and memory (+/-)
- Mortality (+/-)
- Longitudinal studies: ↓ physical function over 5 years, ↓ memory performance, ↑ physician visits and mortality

Limitations
- Definitions of anticholinergic or sedative medications
- Pharmacokinetic and pharmacodynamic parameters
- Estimation of the minimum effective dose
- Observational and pilot RCT studies

Pharmacist led intervention to improve medication use in older in-patients living with frailty: the Drug Burden Index

Highlight drugs which may be suitable for deprescribing

Act as a communication tool
Acknowledgments

Co-PIs
› Susan Bowles
› Jennifer Isenor
› Kenneth Rockwood

Co-Investigators

Postdoctoral Research Pharmacist
› Marci Dearing

Further information
› emily.reeve@sydney.edu.au
› @Reeve_Research

Icons by: Linseed Studio, Musket, Shashank Singh, Nikita Kozin, Delwar Hossain, Eucalyp, Yazmin Alanis, Magicon, Iconic, Snehal Patil and Wojciech Zasina from the Noun Project